Role of glucose in daily torpor of Djungarian hamsters (Phodopus sungorus): challenge of continuous in vivo blood glucose measurements

Author:

Diedrich Victoria1ORCID,Haugg Elena1ORCID,Van Hee Justin2,Herwig Annika1

Affiliation:

1. Institute of Neurobiology, Ulm University, Ulm, Germany

2. Data Sciences International, St. Paul, Minnesota, United States

Abstract

Djungarian hamsters use daily torpor to save energy during winter. This metabolic downstate is part of their acclimatization strategy in response to short photoperiod and expressed spontaneously without energy challenges. During acute energy shortage, torpor incidence, depth, and duration can be modulated. Torpor induction might rely on glucose availability as acute metabolic energy source. To investigate this, the present study provides the first continuous in vivo blood glucose measurements of spontaneous daily torpor in short photoperiod-acclimated and fasting-induced torpor in long photoperiod-acclimated Djungarian hamsters. Glucose levels were almost identical in both photoperiods and showed a decrease during resting phase. Further decreases appeared during spontaneous daily torpor entrance, parallel with metabolic rate but before body temperature, while respiratory exchange rates were rising. During arousal, blood glucose tended to increase, and pretorpor values were reached at torpor termination. Although food-restricted hamsters underwent a considerable energetic challenge, blood glucose levels remained stable during the resting phase regardless of torpor expression. The activity phase preceding a torpor bout did not reveal changes in blood glucose that might be used as torpor predictor. Djungarian hamsters show a robust, circadian rhythm in blood glucose irrespective of season and maintain appropriate levels throughout complex acclimation processes including metabolic downstates. Although these measurements could not reveal blood glucose as proximate torpor induction factor, they provide new information about glucose availability during torpor. Technical innovations like in vivo microdialysis and in vitro transcriptome or proteome analyses may help to uncover the connection between torpor expression and glucose metabolism.

Funder

Universität Ulm

Deutsche Forschungsgemeinschaft

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3