Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats

Author:

Fu Jin,Kim Janet,Oveisi Fariba,Astarita Giuseppe,Piomelli Daniele

Abstract

Pharmacological administration of the natural lipid amide, oleoylethanolamide (OEA), inhibits food intake in free-feeding rodents by prolonging latency to feed and postmeal interval. This anorexic effect is mediated by activation of type-α peroxisome proliferator-activated receptors (PPAR-α). Food intake stimulates mucosal cells in duodenum and jejunum to generate OEA, suggesting that this lipid-derived messenger may act as a local satiety hormone. As a test of this hypothesis, here, we examined whether targeted enhancement of OEA production in the small intestine affects feeding behavior in rats. We constructed an adenoviral vector (Ad-NPLD) that directs overexpression of the enzyme N-acylphosphatidylethanolamine (NAPE)-phospholipase D (PLD), which catalyzes the hydrolysis of NAPE to generate OEA. Intraduodenal injection of the Ad-NPLD vector resulted in a time-dependent increase in NAPE-PLD expression and OEA production, which was restricted to the proximal small intestine. No such effect was observed after administration of a control adenoviral vector. Enhanced OEA production in Ad-NPLD-injected animals was temporally associated with increased expression of two PPAR-α target genes (PPAR-α and CD36) and with decreased food intake. The hypophagic phenotype of Ad-NPLD-injected rats was attributable to increase feeding latency and postmeal interval, rather than decreased meal size. The results suggest that localized changes in OEA production in the small intestine, such as those produced by food intake, are sufficient to induce in rats a state of across-meal satiety similar to that elicited by systemic administration of exogenous OEA.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3