Evaluating the suitability of supra-POpeak verification trials after ramp-incremental exercise to confirm the attainment of maximum O2 uptake

Author:

Iannetta Danilo1,de Almeida Azevedo Rafael1,Ingram Christina P.1,Keir Daniel A.2ORCID,Murias Juan M.1ORCID

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, Canada

2. Department of Medicine, University Health Network, Toronto, Canada

Abstract

During exhaustive ramp-incremental cycling tests, the incidence of O2 uptake (V̇o2) plateaus is low. To verify the attainment of maximum V̇o2 (V̇o2max), it is recommended that a trial at a power output (PO) corresponding to 110% of the ramp-derived peak (POpeak) is performed. It remains unclear whether verification trials set at this PO can be tolerated for long enough to allow attainment of V̇o2max. Eleven recreationally trained individuals performed five ramp tests of varying slope (5, 10, 15, 25, and 30 W/min), each followed, in series, by two verification trials: the first at 110% POpeak of the 25 W/min ramp and the second at 110% POpeak attained in the preceding ramp test. Exercise duration of the first verification trial was on average 81 ± 15 s (CV = 9 ± 3%) versus 162 ± 32, 121 ± 24, 103 ± 15, and 73 ± 10 s for the second verification trials at 110% of POpeak of the 5, 10, 15, and 30 W/min ramp tests, respectively ( P < 0.05). Compared with the highest V̇o2 recorded during ramp tests, V̇o2 from the subsequent verification trials was not different for the 5, 10, and 15 W/min ramp tests ( P > 0.05) but was lower for the 25 and 30 W/min ramp tests ( P < 0.05). Verification trials at 110% POpeak of rapidly incrementing ramp tests (i.e., 25 W/min) were not sustained for long enough to allow the attainment of V̇o2max. With commonly used rapidly incrementing ramp tests engendering exhaustion within 8–12 min, verification trials less than POpeak should be preferred as they can be sustained sufficiently long to allow the attainment of V̇o2max.

Funder

National science and engineering research council of Canada

Heart and Stroke Foundation of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3