Glucose acts in the CNS to regulate gastric motility during hypoglycemia

Author:

Shi Min,Jones Allison R.,Niedringhaus Mark S.,Pearson Rebecca J.,Biehl Ann M.,Ferreira Manuel,Sahibzada Niaz,Verbalis Joseph G.,Gillis Richard A.

Abstract

Our purposes were to 1) develop an animal model where intravenously (iv) administered d-glucose consistently inhibited antral motility, and 2) use this model to assess whether iv glucose acts to inhibit motility from a peripheral or a central nervous system site and to elucidate the factor(s) that determine(s) whether stomach motor function is sensitive to changes in blood glucose. Rats were anesthetized with α-chloralose-urethane, and antral motility was measured by a strain-gauge force transducer sutured to the antrum. In some cases, antral motility and gastric tone were measured by monitoring intragastric balloon pressure. Increases in blood glucose were produced by continuous iv infusion of 25% d-glucose at 2 ml/h. Inhibition of antral motility and gastric tone was observed when gastric contractions were induced by hypoglycemia (subcutaneously administered insulin, 2.5 IU/animal). In contrast, no inhibition of gastric motor function was observed when glucose infusion was tested on gastric contractions that were 1) spontaneously occurring, 2) evoked by iv administered bethanechol in vagotomized animals, and 3) evoked by the TRH analog RX77368, microinjected into the dorsal motor nucleus of the vagus. Using the model of insulin-induced hypoglycemia to increase gastric motor activity, we found that neither sectioning the hepatic branch of the vagus ( n = 5), nor treating animals with capsaicin to destroy sensory vagal afferent nerves ( n = 5) affected the ability of iv d-glucose to inhibit gastric motor function. Our results indicate that an important factor determining whether stomach motor function will be sensitive to changes in blood glucose is the method used to stimulate gastric contractions, and that the primary site of the inhibitory action of iv glucose on gastric motility is the central nervous system rather than the periphery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3