CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle

Author:

Abbott Marcia J.1,Edelman Arthur M.2,Turcotte Lorraine P.31

Affiliation:

1. Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California; and

2. Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York

3. Department of Kinesiology and

Abstract

Multiple signals have been shown to be involved in regulation of fatty acid (FA) and glucose metabolism in contracting skeletal muscle. This study aimed to determine whether a Ca2+-stimulated kinase, CaMKK, is involved in regulation of contraction-induced substrate metabolism and whether it does so in an AMP-activated protein kinase (AMPK)-dependent manner. Rat hindlimbs were perfused at rest ( n = 16), with 3 mM caffeine ( n = 15), with 2 mM 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR; n = 16), or during moderate-intensity muscle contraction (MC; n = 14) and with or without 5 μM STO-609, a CaMKK inhibitor. FA uptake and oxidation increased ( P < 0.05) 64% and 71% by caffeine, 42% and 93% by AICAR, and 65% and 143% by MC. STO-609 abolished ( P < 0.05) caffeine- and MC-induced FA uptake and oxidation but had no effect with AICAR treatment. Glucose uptake increased ( P < 0.05) 104% by caffeine, 85% by AICAR, and 130% by MC, and STO-609 prevented the increase in glucose uptake in caffeine and muscle contraction groups. CaMKKβ activity increased ( P < 0.05) 113% by caffeine treatment and 145% by MC but was not affected by AICAR treatment. STO-609 prevented the caffeine- and MC-induced increase in CaMKKβ activity. Caffeine, AICAR, and MC increased ( P < 0.05) AMPKα2 activity by 295%, 11-fold, and 7-fold but did not affect AMPKα1 activity. STO-609 decreased ( P < 0.05) AMPKα2 activity induced by caffeine treatment and MC by 60% and 61% but did not affect AICAR-induced activity. Plasma membrane transport protein content of CD36 and glucose transporter 4 (GLUT4) increased ( P < 0.05) with caffeine, AICAR, and MC, and STO-609 prevented caffeine- and MC-induced increases in protein content. These results show the importance of Ca2+-dependent signaling via CaMKK activation in the regulation of substrate uptake and FA oxidation in contracting rat skeletal muscle and agree with the notion that CaMKK is an upstream kinase of AMPK in the regulation of substrate metabolism in skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3