Development of K+ and Na+ conductances in rodent postnatal semicircular canal type I hair cells

Author:

Li Gang Q.1,Meredith Frances L.12,Rennie Katherine J.132

Affiliation:

1. Departments of 1Otolaryngology and

2. Neuroscience Program, University of Colorado Denver, Aurora, Colorado

3. Physiology and Biophysics,

Abstract

The rodent vestibular system is immature at birth. During the first postnatal week, vestibular type I and type II hair cells start to acquire their characteristic morphology and afferent innervation. We have studied postnatal changes in the membrane properties of type I hair cells acutely isolated from the semicircular canals (SCC) of gerbils and rats using whole cell patch clamp and report for the first time developmental changes in ionic conductances in these cells. At postnatal day (P) 5 immature hair cells expressed a delayed rectifier K+ conductance ( GDR) which activated at potentials above approximately −50 mV in both species. Hair cells also expressed a transient Na+ conductance ( GNa) with a mean half-inactivation of approximately −90 mV. At P6 in rat and P7 in gerbil, a low-voltage activated K+ conductance ( GK,L) was first observed and conferred a low-input resistance, typical of adult type I hair cells, on SCC type I hair cells. GK,L expression in hair cells increased markedly during the second postnatal week and was present in all rat type I hair cells by P14. In gerbil hair cells, GK,L appeared later and was present in all type I hair cells by P19. During the third postnatal week, GNa expression declined and was absent by the fourth postnatal week in rat and the sixth postnatal week in gerbils. Understanding the ionic changes associated with hair cell maturation could help elucidate development and regeneration mechanisms in the inner ear.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3