Contractile properties of muscle fibers from the deep and superficial digital flexors of horses

Author:

Butcher M. T.12,Chase P. B.2,Hermanson J. W.3,Clark A. N.2,Brunet N. M.24,Bertram J. E. A.5

Affiliation:

1. Department of Biological Sciences, Youngstown State University, Youngstown, Ohio;

2. Department of Biological Science, Florida State University, Tallahassee, Florida;

3. Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York;

4. Program in Molecular Biophysics, Florida State University, Tallahassee, Florida; and

5. Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

Abstract

Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers (“short” compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (Vf). Skinned fiber contractile properties [isometric tension (P0/CSA), velocity of unloaded shortening (VUS), and force-Ca2+relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective Vf. The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and Vfthat was twofold faster than SDF. At 30°C, P0/CSA was higher for DDF (103.5 ± 8.75 mN/mm2) than SDF fibers (81.8 ± 7.71 mN/mm2). Similarly, VUS(pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca2+concentration, with maximal Ca2+activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3