Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep

Author:

Calzavacca Paolo123,Evans Roger G.4,Bailey Michael5,Lankadeva Yugeesh R.1,Bellomo Rinaldo2,May Clive N.1

Affiliation:

1. Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia;

2. Department of Intensive Care and Department of Medicine, Austin Health, Heidelberg, Victoria, Australia;

3. Department of Anesthesia and Intensive Care, AO Melegnano, PO Uboldo, Cernusco sul Naviglio, Italy;

4. Department of Physiology, Monash University, Clayton, Victoria, Australia; and

5. Australian and New Zealand Intensive Care Research Centre, School of Epidemiology and Preventive Medicine, Monash University, Clayton, Australia

Abstract

The role of renal cortical and medullary hypoxia in the development of acute kidney injury is controversial, partly due to a lack of techniques for the long-term measurement of intrarenal oxygenation and perfusion in conscious animals. We have, therefore, developed a methodology to chronically implant combination probes to chronically measure renal cortical and medullary tissue perfusion and oxygen tension (tPo2) in conscious sheep and evaluated their responsiveness and reliability. A transit-time flow probe and a vascular occluder were surgically implanted on the left renal artery. At the same operation, dual fiber-optic probes, comprising a fluorescence optode to measure tPo2 and a laser-Doppler probe to assess tissue perfusion, were inserted into the renal cortex and medulla. In recovered conscious sheep ( n = 8) breathing room air, mean 24-h cortical and medullary tPo2 were similar (31.4 ± 0.6 and 29.7 ± 0.7 mmHg, respectively). In the renal cortex and medulla, a 20% reduction in renal blood flow (RBF) decreased perfusion (14.6 ± 8.6 and 41.2 ± 8.5%, respectively) and oxygenation (48.1 ± 8.5 and 72.4 ± 8.5%, respectively), with greater decreases during a 50% reduction in RBF. At autopsy, minimal fibrosis was observed around the probes. In summary, we have developed a technique to chronically implant fiber-optic probes in the renal cortex and medulla for recording tissue perfusion and oxygenation over many days. In normal resting conscious sheep, cortical and medullary tPo2 were similar. The responses to and recovery from renal artery occlusion, together with the consistent measurements over a 24-h period, demonstrate the responsiveness and stability of the probes.

Funder

National Health and Medical Research Council of Australia

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3