Molecular identification and postprandial regulation of glucose carrier proteins in the hindgut of Pacific hagfish, Eptatretus stoutii

Author:

Weinrauch Alyssa M.12ORCID,Clifford Alexander M.123ORCID,Folkerts Erik J.1ORCID,Schaefer Christina M.12ORCID,Giacomin Marina12ORCID,Goss Greg G.12ORCID

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

2. Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada

3. Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California

Abstract

Hagfish are an excellent model species in which to draw inferences on the evolution of transport systems in early vertebrates owing to their basal position in vertebrate phylogeny. Glucose is a ubiquitous cellular energy source that is transported into cells via two classes of carrier proteins: sodium-glucose-linked transporters (Sglt; Slc5a) and glucose transporters (Glut; Slc2a). Although previous pharmacological evidence has suggested the presence of both sodium-dependent and -independent transport mechanisms in the hagfish, the molecular identities were heretofore unconfirmed. We have identified and phylogenetically characterized both a Slc5a1-like and Slc2a-like gene in the Pacific hagfish ( Eptatretus stoutii), the latter sharing common ancestry with other glucose-transporting isoforms of the Slc2a family. To assess the potential postprandial regulation of these glucose transporters, we examined the abundance and localization of these transporters with qPCR and immunohistochemistry alongside functional studies using radiolabeled d-[14C]glucose. The effects of glucose or insulin injection on glucose transport rate and transporter expression were also examined to determine their potential role(s) in the regulation of intestinal glucose carrier proteins. Feeding prompted an increase in glucose uptake across the hindgut at both 0.5 mM (∼84%) and 1 mM (∼183%) concentrations. Concomitant increases were observed in hindgut Slc5a1 protein expression. These effects were not observed following either of glucose or insulin injection, indicating these postprandial factors are not the driving force for transporter regulation over this timeframe. We conclude that Pacific hagfish utilize evolutionarily conserved mechanisms of glucose uptake and so represent a useful model to understand early-vertebrate evolution of glucose uptake and regulation.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In situ method for the determination of nutrient acquisition and its hormonal regulation in the spiral valve of two chondrichthyan fishes;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3