Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages

Author:

Frost Matthew T.,Wang Qi,Moncada Salvador,Singer Mervyn

Abstract

Excess production of nitric oxide (NO) is implicated in the development of multiple organ failure, with a putative mechanism involving direct mitochondrial inhibition, predominantly affecting complex I. The persistent effects of NO on complex I may be mediated through S-nitrosylation and/or nitration. The temporal contribution of these chemical modifications to the inhibition of respiration and the influence of concurrent hypoxia have not been previously examined. We therefore addressed these questions using J774 macrophages activated by endotoxin and interferon-γ over a 24-h period, incubated at 21% and 1% oxygen. Oxygen consumption and complex I activity fell progressively over time in the activated cells. This was largely prevented by coincubation with the nonspecific NO synthase inhibitor l- N5-(1-iminoethyl)-ornithine. Addition of glutathione ethyl ester reversed the inhibition at initial time points, suggesting an early mechanism involving nitrosylation. Thereafter, the inhibition of complex I became more persistent, coinciding with a progressive increase in mitochondrial nitration. Hypoxia accelerated the persistent inhibition of complex I, despite a reduction in the total amount of NO generated. Our results suggest that hypoxia amplified the mitochondrial inhibition induced by NO generated during inflammatory disease states.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3