Central cholinergic mechanisms mediate swallowing, renal excretion, and c-fos expression in the ovine fetus near term

Author:

Shi Lijun,Mao Caiping,Zeng Fanxing,Zhu Liyan,Xu Zhice

Abstract

Fetal swallowing and renal metabolism contribute importantly to amniotic and body fluid homeostasis. To determine central cholinergic modulation of swallowing activity and renal excretion associated with neural activity, we examined the effects of intracerebroventricular injection of carbachol, a cholinergic agonist, in ovine fetuses at 0.9 gestation. Fetuses were chronically prepared with thyrohyoid, nuchal and thoracic esophagus, and diaphragm electromyogram electrodes, as well as lateral ventricle and vascular catheters. Electrodes were also implanted on the parietal dura for determination of fetal electrocorticogram (ECoG). After 5 days of recovery, fetal swallowing, ECoG, and urine output were monitored during basal period and the experimental period following intracerebroventricular injection of 0.9% NaCl as the control ( n = 5) or carbachol (3 μg/kg, n = 5). Central carbachol did not significantly change fetal low voltage (LV) and high voltage (HV) ECoG temporal distributions. However, swallowing activity during LV ECoG was elevated significantly after intracerebroventricular carbachol. Associated with the swallowing activation, c- fos immunoreactivity in the putative dipsogenic center, subfornical organ, was enhanced significantly. The fetal urine flow rate and renal Na+, K+, and Cl excretion were markedly increased following intracerebroventricular carbachol and sustained at the high level for at least 2 h. The results indicate that the central cholinergic mechanism is established and functional in regulation of fetal behavior and renal excretion at least at 0.9 gestation, which plays an important role in maintenance of fetal body fluid homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atropine facilitates water-evoked swallows via central muscarinic receptors in anesthetized rats;American Journal of Physiology-Gastrointestinal and Liver Physiology;2023-08-01

2. Development of Gut Motility;Pediatric Neurogastroenterology;2022

3. Development of Gut Motility;Pediatric Neurogastroenterology;2016-11-27

4. Development of Gut Motility;Pediatric Neurogastroenterology;2012-11-07

5. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases;Drug Discovery Today;2010-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3