Left vagal stimulation induces dynorphin release and suppresses substance P release from the rat thoracic spinal cord during cardiac ischemia

Author:

Hua Fang,Ardell Jeffrey L.,Williams Carole A.

Abstract

Electrostimulatory forms of therapy can reduce angina that arises from activation of cardiac nociceptive afferent fibers during transient ischemia. This study sought to determine the effects of electrical stimulation of left thoracic vagal afferents (C8–T1 level) on the release of putative nociceptive [substance P (SP)] and analgesic [dynorphin (Dyn)] peptides in the dorsal horn at the T4 spinal level during coronary artery occlusion in urethane-anesthetized Sprague-Dawley rats. Release of Dyn and SP was measured by using antibody-coated microprobes. While Dyn and SP had a basal release, occlusion of the left anterior descending coronary artery only affected SP release, causing an increase from lamina I-VII. Left vagal stimulation increased Dyn release, inhibited basal SP release, and blunted the coronary artery occlusion-induced release of SP. Dyn release reflected activation of descending pathways in the thoracic spinal cord, because vagal afferent stimulation still increased the release of Dyn after bilateral dorsal rhizotomy of T2–T5. These results indicate that electrostimulatory therapy, using vagal afferent excitation, may induce analgesia, in part, via inhibition of the release of SP in the spinal cord, possibly through a Dyn-mediated neuronal interaction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference57 articles.

1. Vagal afferent inhibition of spinothalamic cell responses to sympathetic afferents and bradykinin in the monkey.

2. Ardell JL, Dell'Italia LJ, and Armour JA. Epilogue: relevance of the cardiac neuronal hierarchy in heart disease. In: Basic and Clinical Cardiology, edited by Armour JA and Ardell JL. Oxford UK: Oxford University Press, 2004, chapt. 15, p. 419–424.

3. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord

4. Responses of thoracic spinoreticular and spinothalamic cells to intracardiac bradykinin

5. Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3