Author:
Herrera Gerald M.,Etherton Bud,Nausch Bernhard,Nelson Mark T.
Abstract
When the urinary bladder is full, activation of parasympathetic nerves causes release of neurotransmitters that induce forceful contraction of the detrusor muscle, leading to urine voiding. The roles of ion channels that regulate contractility of urinary bladder smooth muscle (UBSM) in response to activation of parasympathetic nerves are not well known. The present study was designed to characterize the role of large (BK)- and small-conductance (SK) Ca2+-activated K+(KCa) channels in regulating UBSM contractility in response to physiological levels of nerve stimulation in UBSM strips from mice. Nerve-evoked contractions were induced by electric field stimulation (0.5–50 Hz) in isolated strips of UBSM. BK and SK channel inhibition substantially increased the amplitude of nerve-evoked contractions up to 2.45 ± 0.12- and 2.99 ± 0.25-fold, respectively. When both SK and BK channels were inhibited, the combined response was additive. Inhibition of L-type voltage-dependent Ca2+channels (VDCCs) in UBSM inhibited nerve-evoked contractions by 92.3 ± 2.0%. These results suggest that SK and BK channels are part of two distinct negative feedback pathways that limit UBSM contractility in response to nerve stimulation by modulating the activity of VDCCs. Dysfunctional regulation of UBSM contractility by alterations in BK/SK channel expression or function may underlie pathologies such as overactive bladder.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献