Effects of carbon monoxide on trout and lamprey vessels

Author:

Dombkowski Ryan A.,Whitfield Nathan L.,Motterlini Roberto,Gao Yan,Olson Kenneth R.

Abstract

Carbon monoxide (CO) is endogenously produced by heme oxygenase (HO) and is involved in vascular, neural, and inflammatory responses in mammals. However, the biological activities of CO in nonmammalian vertebrates is unknown. To this extent, we used smooth muscle myography to investigate the effects of exogenously applied CO (delivered via a water-soluble CO-releasing molecule, CORM-3) on isolated lamprey ( Petromyzon marinus) dorsal aortas and examined its mechanisms of action on trout ( Oncorhynchus mykiss) efferent branchial (EBA) and celiacomesenteric (CMA) arteries. CORM-3 dose-dependently relaxed all vessels examined. Trout EBA were twofold more sensitive to CORM-3 when precontracted with norepinephrine (NE) than KCl and CORM-3 relaxed five-fold more of the NE- than KCl-induced tension. Glybenclamide (10 μM), an ATP-sensitive potassium channel inhibitor, inhibited NE-induced contraction, but did not affect CORM-3-induced relaxation. NS-2028 (10 μM), a soluble guanylyl cyclase inhibitor, had no effect on a NE-contraction, but inhibited a subsequent CORM-3-induced relaxation. Zinc protopophyrin-IX (ZnPP-IX, 0.3–30 μM), a HO inhibitor, elicited a small, yet dose-dependent and significant, increase in baseline tension but did not have any effect on subsequent NE-induced contractions or a nitric oxide-induced relaxation (via sodium nitroprusside). [ZnPP-IX] greater than 3 μM, however, significantly reduced the predominant vasodilatory response of trout EBA to hydrogen sulfide. These results implicate an active HO/CO pathway in trout vessels having an impact on resting vessel tone and CO-induced vasoactivity that is at least partially mediated by soluble guanylyl cyclase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Different vasodilator mechanisms in intermediate- and small-sized arteries from the hindlimb vasculature of the toad Rhinella marina;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2019-09-01

2. NO, CO and H2S: What about gasotransmitters in fish and amphibian heart?;Acta Physiologica;2018-02-12

3. Form, Function and Control of the Vasculature;Fish Physiology;2017

4. Hormonal and Autacoid Control of Cardiac Function;Fish Physiology;2017

5. Role of endogenous carbon monoxide in the control of breathing in zebrafish (Danio rerio);American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2016-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3