Vasopressin V2 receptor mRNA expression and cAMP accumulation in aging rat kidney

Author:

Klingler C.1,Preisser L.1,Barrault M. B.1,Lluel P.1,Horgen L.1,Teillet L.1,Ancellin N.1,Corman B.1

Affiliation:

1. Service de Biologie Cellulaire, Commissariat a l'Energie Atomique,Centre d'Etudes de Saclay, Gif-sur-Yvette, France.

Abstract

The ability of the kidney to regulate water balance is impaired with age, although the secretion of vasopressin is maintained in senescent animals. This suggests that the cellular response to antidiuretic hormone is reduced in aging kidney. To test this hypothesis, the relationship between the expression of the vasopressin. V2 receptor mRNA and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was investigated in the medullary thick ascending limb of Henle's loop (MTAL) of adult and aging rats. Tubular suspensions of MTAL were prepared from 10- and 30-mo-old female WAG/Rij rats. The accumulation of cAMP for maximal concentration of vasopressin was 34% larger in adult than in old animals (9.5 +/- 0.5 pmol/4 min, n = 16, and 7.1 +/- 0.6 pmol/4 min, n = 12, respectively). The concentration of vasopressin corresponding to half-maximal stimulation was similar in the two groups (0.66 +/- 0.20 and 0.52 +/- 0.09 nmol, n = 5, in adult and old animals), indicating comparable sensitivity of the renal cells with age. The age-related impaired response to vasopressin of the V2 receptor was specific for females and was not observed in males. Direct stimulation of adenylyl cyclase by forskolin induced a comparable accumulation of cAMP in adult and senescent rats. The V2 receptor mRNA level in the MTAL was constant between 10 and 30 mo whether the animals were normally hydrated or dehydrated for 2 days. These data indicate that, in MTAL, the age-related impaired cAMP accumulation by vasopressin would be linked to a change either in the translation of V2 mRNA or in posttranslational processing mechanisms or in the coupling between the V2 receptor and adenylyl cyclase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3