Eye and gonad: role in the dual-oscillator circadian system of female Japanese quail

Author:

Underwood H.1,Siopes T.1,Edmonds K.1

Affiliation:

1. Department of Zoology, North Carolina State University, Raleigh27695-7617, USA. Herbert_Underwood@ncsu.edu

Abstract

Experiments were conducted to determine the anatomic and physiological basis of the dual-oscillator circadian system of female Japanese quail. After blocking of ocular light perception by eye-patching, the circadian body temperature rhythm dissociates into two circadian components in continuous lighting (LL). One component free runs with a period significantly shorter than 24 h [mean period (tau) = 22.7 h] and is driven by an ocular pacemaker, whereas the other component free runs with a period significantly longer than 24 h (tau = 26.3 h). The long free-running rhythm is driven by the same circadian clock that drives the circadian rhythm of ovulation. The expression of the long free-running rhythm in LL depends on the presence of the ovary: body temperature rhythmicity is abolished by ovariectomy. The two free-running oscillators in eye-patched birds showed evidence of mutual interaction. Significantly, the phase relationships that occur as the two oscillators interact can determine whether or not ovulation occurs. The results are discussed in terms of an "internal coincidence" mechanism for photoperiodic time measurement.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike;Journal of Biological Rhythms;2024-02-20

2. Photoperiodic regulation of avian physiology: From external coincidence to seasonal reproduction;Journal of Experimental Zoology Part A: Ecological and Integrative Physiology;2022-05-10

3. Daily rhythms of expression in reproductive genes along the brain-pituitary-gonad axis and liver of zebrafish;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2019-05

4. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct;Poultry Science;2016-07

5. Circadian Clock Function in the Mammalian Ovary;Journal of Biological Rhythms;2014-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3