Abstract
The renal medulla develops very differently among species, being more prominent in those with a high urinary concentrating capacity. Attempts to correlate structure and function must consider loops of Henle, collecting ducts, vessels, interstitium, and pelvis. Two types of loops of Henle, long and short, are distinguished. Numerical relationships between both differ among species. Based on the epithelial lining a short loop consists of a thick descending limb (pars recta of proximal tubule), a thin descending limb, and a thick ascending limb. Long loops, in addition, have a thin ascending limb; their descending thin limbs are different from those of short loops and are site of considerable interspecies differences. Collecting ducts form in the cortex by joining several nephrons. Patterns with and without arcade formation are distinguished. On entering inner medulla, collecting ducts fuse successively. Collecting duct epithelium consists of principal and intercalated cells whose individual functions are subject to debate. Blood vessels are arranged in a very strict pattern reflecting that, in addition to nourishment, unique requirements in maintaining the corticomedullary osmotic gradient are to be met. Ultrastructural organization of medullary vessels is less specific compared to cortical vessels. Two types of renal medulla are distinguished. The simple type has vascular bundles consisting only of de- and ascending vasa recta; in the complex type, descending thin limbs of short loops are also integrated into vascular bundles. Functional implications of this difference are considerable. Striking interspecies differences also occur in the renal pelvis.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
219 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献