A perinatal nitric oxide donor increases renal vascular resistance and ameliorates hypertension and glomerular injury in adult fawn-hooded hypertensive rats

Author:

Koeners Maarten P.,Braam Branko,van der Giezen Dionne M.,Goldschmeding Roel,Joles Jaap A.

Abstract

Enhancing perinatal nitric oxide (NO) availability persistently reduces blood pressure in spontaneously hypertensive rats. We hypothesize that this approach can be generalized to other models of genetic hypertension, for instance those associated with renal injury. Perinatal exposure to the NO donor molsidomine was studied in fawn-hooded hypertensive (FHH) rats, a model of mild hypertension, impaired preglomerular resistance, and progressive renal injury. Perinatal molsidomine increased urinary NO metabolite excretion at 8 wk of age, i.e., 4 wk after treatment was stopped ( P < 0.05). Systolic blood pressure was persistently reduced after molsidomine (42-wk females: 118 ± 3 vs. 141 ± 5 and 36-wk males: 139 ± 4 vs. 158 ± 4 mmHg; both P < 0.001). Perinatal treatment decreased glomerular filtration rate ( P < 0.05) and renal blood flow ( P < 0.01) and increased renal vascular resistance ( P < 0.05), without affecting filtration fraction, suggesting persistently increased preglomerular resistance. At 4 wk of age natriuresis was transiently increased by molsidomine ( P < 0.05). Molsidomine decreased glomerulosclerosis ( P < 0.05). Renal blood flow correlated positively with glomerulosclerosis in control ( P < 0.001) but not in perinatally treated FHH rats. NO dependency of renal vascular resistance was increased by perinatal molsidomine. Perinatal enhancement of NO availability can ameliorate development of hypertension and renal injury in FHH rats. Paradoxically, glomerular protection by perinatal exposure to the NO donor molsidomine may be due to persistently increased preglomerular resistance. The mechanisms by which increased perinatal NO availability can persistently reprogram kidney function and ameliorate hypertension deserve further study.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3