Postnatal glucocorticoid exposure alters the adult phenotype

Author:

He Jing,Varma Amit,Weissfeld Lisa A.,Devaskar Sherin U.

Abstract

We examined the effect of six doses of dexamethasone (Dex) administered daily (2–7 days of age) to postnatal rats on body weight gain, food and water intake, peripheral hormonal/metabolic milieu, and hypothalamic neuropeptides that regulate food intake. We observed a Dex-induced acute (3 days of age) suppression of endogenous corticosterone and an increase in circulating leptin concentrations that were associated with a decrease in body weight in males and females. Followup during the suckling, postsuckling, and adult stages (7–120 days of age) revealed hypoleptinemia in males and females, and hypoinsulinemia, a relative increase in the glucose-to-insulin ratio, and a larger increase in skeletal muscle glucose transporter (GLUT 4) concentrations predominantly in the males, reflective of a catabolic state associated with a persistent decrease in body weight gain. The increase in the glucose-to-insulin ratio and hyperglycemia was associated with an increase in water intake. In addition, the changes in the hormonal/metabolic milieu were associated with an increase in hypothalamic neuropeptide Y content in males and females during the suckling phase, which persisted only in the 120-day-old female with a transient postnatal decline in α-melanocyte-stimulating hormone and corticotropin-releasing factor. This increase in neuropeptide Y (NPY) during the suckling phase in males and females was associated with a subsequent increase in adult food intake that outweighed the demands of body weight gain. In contrast to the adult hypothalamic findings, cerebral ventricular dilatation was more prominent in adult males. We conclude that postnatal Dex treatment causes permanent sex-specific changes in the adult phenotype, setting the stage for future development of diabetes (increased glucose:insulin ratio), obesity (increased NPY and food intake), and neurological impairment (loss of cerebral volume).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3