Sensory neuron inositol 1,4,5-trisphosphate receptors contribute to chronic mechanoreflex sensitization in rats with simulated peripheral artery disease

Author:

Rollins Korynne S.1,Butenas Alec L. E.1ORCID,Williams Auni C.1,Copp Steven W.1

Affiliation:

1. Department of Kinesiology, Kansas State University, Manhattan, Kansas

Abstract

The mechanoreflex is exaggerated in patients with peripheral artery disease (PAD) and in a rat model of simulated PAD in which a femoral artery is chronically (∼72 h) ligated. We found recently that, in rats with a ligated femoral artery, blockade of thromboxane A2 (TxA2) receptors on the sensory endings of thin fiber muscle afferents reduced the pressor response to 1 Hz repetitive/dynamic hindlimb skeletal muscle stretch (a model of mechanoreflex activation isolated from contraction-induced metabolite production). Conversely, we found no effect of TxA2 receptor blockade in rats with freely perfused femoral arteries. Here, we extended the isolated mechanoreflex findings in “ligated” rats to experiments evoking dynamic hindlimb skeletal muscle contractions. We also investigated the role played by inositol 1,4,5-trisphosphate (IP3) receptors, receptors associated with intracellular signaling linked to TxA2 receptors, in the exaggerated response to dynamic mechanoreflex and exercise pressor reflex activation in ligated rats. Injection of the TxA2 receptor antagonist daltroban into the arterial supply of the hindlimb reduced the pressor response to 1 Hz dynamic contraction in ligated but not “freely perfused” rats. Moreover, injection of the IP3 receptor antagonist xestospongin C into the arterial supply of the hindlimb reduced the pressor response to 1 Hz dynamic stretch and contraction in ligated but not freely perfused rats. These findings demonstrate that, in rats with a ligated femoral artery, sensory neuron TxA2 receptor and IP3 receptor-mediated signaling contributes to a chronic sensitization of the mechanically activated channels associated with the mechanoreflex and the exercise pressor reflex.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3