Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs

Author:

Donohoe Paul H.1,West Timothy G.1,Boutilier Robert G.1

Affiliation:

1. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom

Abstract

Aerobic metabolic rates (M˙o 2) and respiratory quotients (RQ = CO2production/M˙o 2) were measured contemporaneously in hibernating frogs Rana temporaria (L.), submerged for 90 days at 3°C. After 3 mo of submergence in fully aerated water,M˙o 2levels were 61% of those seen at the same temperature before hibernation. Over the first 40 days of hibernation, RQ values (≤0.82) favored a lipid-based metabolism that progressively shifted to an exclusively carbohydrate metabolism (RQ = 1.01) by 90 days of hibernation. Liver glycogen concentrations fell by 68% during the first 8 wk of submergence, thereafter exhibiting a less rapid rate of utilization. Conversely, muscle glycogen concentrations remained stable over the first 2 mo of the experiment before falling by 33% over the course of the remaining 2 mo, indicating that the frog was recruiting muscle glycogen reserves to fuel metabolism. Submerged frogs exhibited an extracellular acidosis during the first week of submergence, but over the course of the next 15 wk “extracellular pH” values were not significantly different from the values obtained from the control air-breathing animals. The initial extracellular acidosis was not mirrored in the intracellular compartment, and the acid-base state was not significantly different from the control values for the first 8 wk. However, over the subsequent 8- to 16-wk period, the acid-base status shifted to a lower intracellular pH-[Formula: see text] concentration set point, indicative of a metabolic acidosis. Even so, there was no indication that the acidosis could be attributed to anaerobic metabolism, as both plasma and muscle lactate levels remained low and stable. Muscle adenylate energy charge and lactate-to-pyruvate and creatine-to-phosphocreatine ratios also remained unchanged throughout hibernation. The capacity for profound metabolic rate suppression together with the ability to match substrate use to shifts in aerobic metabolic demands and the ability to fix new acid-base homeostatic set points are highly adaptive, both in terms of survival and reproductive success, to an animal that is often forced to overwinter under the cover of ice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3