Affiliation:
1. Departments of Pediatrics and Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
Abstract
In fetal sheep, umbilical responsiveness to ANG II exceeds systemic vascular responsiveness. Fetal systemic vascular smooth muscle (VSM) exhibits an immature phenotype with decreased contractile protein contents, low 200-kDa myosin heavy chain (MHC) SM2, and significant nonmuscle MHC-B expression, whereas umbilical VSM phenotype is incompletely described. We tested the hypothesis that differences in vascular responsiveness could reflect dissimilarities in VSM phenotype. Actin, MHC, MHC isoforms, and active stresses were compared in strips of femoral arteries and aorta from near-term fetal ( n = 12) and adult ( n = 12) sheep to those in external and intra-abdominal umbilical arteries. Actin contents in fetal femoral artery and aorta were less ( P ≤ 0.006) than in external umbilical artery (7.37 ± 1.4 and 7.53 ± 0.7 vs. 21.6 ± 2.2 μg/mg wet wt, respectively) as were MHC contents (3.17 ± 0.4 and 2.84 ± 0.3 vs. 7.16 ± 0.7, respectively). Whereas 204- and 200-kDa MHC were expressed equally in fetal systemic arteries, umbilical and adult arteries predominantly expressed the 204-kDa isoform (SM1); only fetal systemic VSM expressed MHC-B. Fetal systemic artery stresses and myosin light chain phosphorylation were less than those in umbilical and adult arteries ( P < 0.001). Compared with umbilical and adult arteries, fetal systemic VSM is biochemically and functionally immature and thus umbilical VSM demonstrates precocious maturation resembling adult VSM in protein expression and function.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献