Altered frequency characteristics of sympathetic nerve activity after sustained elevation in arterial pressure

Author:

Claassen Dale E.1,Fels Richard J.1,Kenney Michael J.1

Affiliation:

1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506

Abstract

We tested the hypothesis that sustained elevation in mean arterial pressure (MAP) alters the frequency-domain characteristics of efferent sympathetic nerve discharge (SND) after the return of MAP to control levels. Renal, lumbar, and splanchnic SND were recorded before, during, and after a 30-min increase in MAP produced by phenylephrine (PE) infusion in α-chloralose-anesthetized, spontaneously hypertensive (SH) rats. The following observations were made. 1) The basic cardiac-locked pattern of renal, lumbar, and splanchnic SND bursts was altered after sustained elevation in MAP, demonstrating prolonged effects on the neural circuits involved in entraining efferent SND to the cardiac cycle. Importantly, discharge bursts in afferent baroreceptor nerve activity remained pulse-synchronous after sustained increases in arterial pressure. 2) The frequency-domain relationships between the activity in sympathetic nerve pairs were altered after sustained elevation in MAP, suggesting a transformation from a system of tightly coupled neural circuits to one of multiple generators exerting selective control over SND. 3) The most prominent reduction in SND power after sustained elevation in MAP occurred in the frequency band containing the cardiac cycle, indicating that the prolonged suppression of SND after sustained increases in arterial pressure is due primarily to the selective inhibition of cardiac-related SND bursts. We conclude that sustained elevation in MAP profoundly affects the neural circuits responsible for the frequency components of basal SND in SH rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomic regulation of cellular immune function;Autonomic Neuroscience;2014-05

2. Role of paraventricular nucleus in regulation of sympathetic nerve frequency components;American Journal of Physiology-Heart and Circulatory Physiology;2003-05-01

3. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow;Acta Physiologica Scandinavica;2002-12-19

4. Sympathetic nerve regulation to heating is altered in senescent rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2002-08-01

5. Altered frequency responses of sympathetic nerve discharge bursts after IL-1β and mild hypothermia;Journal of Applied Physiology;2002-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3