Activation of vasopressin neurons leads to phenotype progression in a mouse model for familial neurohypophysial diabetes insipidus

Author:

Hiroi Maiko1,Morishita Yoshiaki1,Hayashi Masayuki1,Ozaki Nobuaki1,Sugimura Yoshihisa1,Nagasaki Hiroshi2,Shiota Akira3,Oiso Yutaka1,Arima Hiroshi1

Affiliation:

1. Department of Endocrinology and Diabetes, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan;

2. Department of Metabolic Medicine, Nagoya University School of Medicine, Showa-ku, Nagoya, Japan;

3. PhoenixBio, Ltd., Utsunomiya, Tochigi, Japan

Abstract

Familial neurohypophysial diabetes insipidus (FNDI) is a rare disease that is inherited in an autosomal dominant manner. In a previous study, we made a mouse model for FNDI, which showed progressive polyuria accompanied by inclusion bodies in the arginine vasopressin (AVP) neurons formed by aggregates in the endoplasmic reticulum. The present study was conducted to determine whether the activities of AVP neurons are related to the phenotype progression in the FNDI model. In the first experiment, female heterozygous mice were administered either desmopressin (dDAVP) or a vehicle (control) subcutaneously with osmotic minipumps for 30 days. The dDAVP treatment significantly decreased the urine volume, AVP mRNA expression, and inclusion bodies in the AVP neurons. Urine volume in the dDAVP group remained significantly less than the control for 14 days even after the minipumps were removed. In the second experiment, the males were fed either a 0.2% Na or 2.0% Na diet for 6 mo. Urine AVP excretion was significantly increased in the 2.0% Na group compared with the 0.2% Na group for the first 2 mo but gradually decreased thereafter. Throughout the experiments, urine volume increased progressively in the 2.0% Na group but not in the 0.2% Na group. Immunohistochemical analyses revealed that inclusion bodies in the AVP cells had significantly increased in the 2.0% Na compared with the 0.2% Na group. These data demonstrated that activation of AVP neurons could accelerate the aggregate formation as well as the progression of the polyuria in the FNDI model mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3