Variation in levels of luteinizing hormone and reproductive photoresponsiveness in a population of white-footed mice (Peromyscus leucopus)

Author:

Heideman Paul D.1,Pittman Julian T.1,Schubert Kristin A.1,Dubois Christen M. R.1,Bowles Jennifer1,Lowe Sean M.1,Price Matthew R.1

Affiliation:

1. Department of Biology, College of William and Mary, Williamsburg, Virginia

Abstract

Natural genetic variation in reproduction and life history strategies is a manifestation of variation in underlying regulatory neuronal and endocrine systems. A test of the hypothesis that genetic variation in luteinizing hormone (LH) level could be related to a life history trait, seasonal reproduction, was conducted on artificial selection lines from a wild-source population of white-footed mice ( Peromyscus leucopus ). Variation exists in the degree of suppression of reproduction by winter short-day photoperiods (SD) in wild-source individuals and in the laboratory population. In this population, most individuals from a photoperiod-responsive (R) artificial selection line are strongly suppressed reproductively in SD, while most individuals from a photoperiod-nonresponsive (NR) artificial selection line are only weakly reproductively suppressed in SD. We assayed levels of LH to test for genetic variation between lines that could contribute to variation in reproductive status in SD. Females from both lines were raised in long-day photoperiods (LD) or SD, ovariectomized under isoflurane anesthesia, and given estradiol implants. Levels of LH were significantly higher in the NR line than in the R line, indicating genetic variation for levels of LH. Levels of LH were higher in LD than in SD, indicating that levels of LH were sensitive to photoperiod treatment even with a controlled level of estradiol negative feedback. The results indicate that there is genetic variation in levels of LH that could be functionally important both in the laboratory in SD and in the wild population in winter. Thus genetic variation in levels of LH is a plausible causal factor determining winter reproductive phenotype in the wild population.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3