Affiliation:
1. Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775; and
2. Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
Abstract
Nonshivering thermogenesis in brown adipose tissue (BAT) provides heat through activation of a mitochondrial uncoupling protein (UCP1), which causes futile electron transport cycles without the production of ATP. Recent discovery of two molecular homologues, UCP2, expressed in multiple tissues, and UCP3, expressed in muscle, has resulted in investigation of their roles in thermoregulatory physiology and energy balance. To determine the expression pattern of Ucp homologues in hibernating mammals, we compared relative mRNA levels of Ucp1, -2, and -3 in BAT, white adipose tissue (WAT), and skeletal muscle of arctic ground squirrels ( Spermophilus parryii) hibernating at different ambient and body temperatures, with levels determined in tissues from ground squirrels not in hibernation. Here we report significant increases in mRNA levels for Ucp2 in WAT (1.6-fold) and Ucp3 in skeletal muscle (3-fold) during hibernation. These results indicate the potential for a role of UCP2 and UCP3 in thermal homeostasis during hibernation and indicate that parallel mechanisms and multiple tissues could be important for nonshivering thermoregulation in mammals.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献