The area postrema does not modulate the long-term salt sensitivity of arterial pressure

Author:

Collister John P.1,Osborn John W.2

Affiliation:

1. Departments of Veterinary PathoBiology,

2. Animal Science, and Physiology, University of Minnesota, St. Paul, Minnesota 55108

Abstract

The hindbrain circumventricular organ, the area postrema (AP), receives multiple signals linked to body fluid homeostasis. In addition to baroreceptor input, AP cells contain receptors for ANG II, vasopressin, and atrial natriuretic peptide. Hence, it has been proposed that the AP is critical in long-term adjustments in sympathetic outflow in response to changes in dietary NaCl. The present study was designed to test the hypothesis that long-term control of arterial pressure over a range of dietary NaCl requires an intact AP. Male Sprague-Dawley rats were randomly selected for lesion of the AP (APx) or sham lesion. Three months later, rats were instrumented with radiotelemetry transmitters for continuous monitoring of mean arterial pressure (MAP) and heart rate and were placed in individual metabolic cages. Rats were given 1 wk postoperative recovery. The dietary salt protocol consisted of a 7-day period of 1.0% NaCl (control), 14 days of 4.0% NaCl (high), 7 days of 1.0% NaCl, and finally 14 days of 0.1% NaCl (low). The results are reported as the average arterial pressure observed on the last day of the given dietary salt period: APx ( n = 7) 114 ± 2 (1.0%), 110 ± 3 (4.0%), 110 ± 3 (1.0%), and 114 ± 4 (0.1%) mmHg; sham ( n = 6) 115 ± 2 (1.0%), 114 ± 3 (4.0%), 111 ± 3 (1.0%), and 113 ± 2 (0.1%) mmHg. Neither group of rats demonstrated significant changes in MAP throughout the entire dietary salt protocol. Furthermore, no significant differences in MAP were detected between groups throughout the protocol. All lesions were histologically verified. These results suggest that the area postrema plays no role in long-term control of arterial pressure during chronic changes in dietary salt.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3