Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion

Author:

Chesley Alan1,Howlett Richard A.1,Heigenhauser George J. F.1,Hultman Eric1,Spriet Lawrence L.1

Affiliation:

1. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5

Abstract

This study examined the effects of caffeine (Caf) ingestion on muscle glycogen use and the regulation of muscle glycogen phosphorylase (Phos) activity during intense aerobic exercise. In two separate trials, 12 untrained males ingested either placebo (Pl) or Caf (9 mg/kg body wt) 1 h before cycling at 80% maximum O2 consumption (V˙o 2 max) for 15 min. Muscle biopsies were obtained from the vastus lateralis at 0, 3, and 15 min of exercise. In this study, glycogen “sparing” was defined as a 10% or greater reduction in muscle glycogen use during exercise after Caf ingestion compared with Pl. Muscle glycogen use decreased by 28% (Pl 255 ± 38 vs. Caf 184 ± 24 mmol/kg dry muscle) after Caf in six subjects [glycogen sparers (Sp)] but was unaffected by Caf in six other subjects [nonsparers (NSp), Pl 210 ± 35 vs. Caf 214 ± 37 mmol/kg dry muscle]. In both groups, Caf significantly increased resting free fatty acid concentration, significantly increased epinephrine concentration by twofold during exercise, and increased the Phos a mole fraction at 3 min of exercise compared with Pl, although not significantly. Caf improved the energy status of the muscle during exercise in the Sp group: muscle phosphocreatine (PCr) degradation was significantly reduced (Pl 47.9 ± 3.6 vs. Caf 40.4 ± 6.7 mmol/kg dry muscle at 3 min) and the accumulations of free ADP and free AMP (Pl 6.8 ± 1.3 vs. Caf 3.1 ± 1.4 μmol/kg dry muscle at 3 min; Pl 8.7 ± 0.8 vs. Caf 4.7 ± 1.1 μmol/kg dry muscle at 15 min) were significantly reduced. Caf had no effect on these measurements in the NSp group. It is concluded that the Caf-induced decrease in flux through Phos (glycogen-sparing effect) is mediated via an improved energy status of the muscle in the early stages of intense aerobic exercise. This may be related to an increased availability of fat and/or ability of mitochondria to oxidize fat during exercise preceded by Caf ingestion. It is presently unknown why the glycogen-sparing effect of Caf does not occur in all untrained individuals during intense aerobic exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3