Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation

Author:

Baan Mieke1,Kibbe Carly R.1,Bushkofsky Justin R.1,Harris Ted W.1,Sherman Dawn S.1,Davis Dawn Belt12ORCID

Affiliation:

1. Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and

2. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin

Abstract

Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 ( Tph1), tryptophan hydroxylase-2 ( Tph2), and cytokine-inducible SH2 containing protein ( Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.

Funder

HHS | National Institutes of Health (NIH)

HHS | NIH | NIH Office of the Director (OD)

HHS | NIH | National Institute on Aging (U.S. National Institute on Aging)

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3