Deficiency of selenoprotein S, an endoplasmic reticulum resident oxidoreductase, impairs the contractile function of fast-twitch hindlimb muscles

Author:

Addinsall Alex B.1ORCID,Wright Craig R.2,Shaw Chris S.2,McRae Natasha L.1,Forgan Leonard G.1,Weng Chia-Heng3,Conlan Xavier A.4,Francis Paul S.4ORCID,Smith Zoe M.4,Andrikopoulos Sofianos3,Stupka Nicole1ORCID

Affiliation:

1. Centre for Molecular and Medical Research, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia

2. Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Waurn Ponds, Victoria, Australia

3. Department of Medicine–Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia

4. Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia

Abstract

Selenoprotein S (Seps1) is an endoplasmic reticulum (ER) resident antioxidant implicated in ER stress and inflammation. In human vastus lateralis and mouse hindlimb muscles, Seps1 localization and expression were fiber-type specific. In male Seps1+/− heterozygous mice, spontaneous physical activity was reduced compared with wild-type littermates ( d = 1.10, P = 0.029). A similar trend was also observed in Seps1−/− knockout mice ( d = 1.12, P = 0.051). Whole body metabolism, body composition, extensor digitorum longus (EDL), and soleus mass and myofiber diameter were unaffected by genotype. However, in isolated fast EDL muscles from Seps1−/− knockout mice, the force frequency curve (FFC; 1–120 Hz) was shifted downward versus EDL muscles from wild-type littermates ( d = 0.55, P = 0.002), suggestive of reduced strength. During 4 min of intermittent, submaximal (60 Hz) stimulation, the genetic deletion or reduction of Seps1 decreased EDL force production ( d = 0.52, P < 0.001). Furthermore, at the start of the intermittent stimulation protocol, when compared with the 60-Hz stimulation of the FFC, EDL muscles from Seps1−/− knockout or Seps1+/− heterozygous mice produced 10% less force than those from wild-type littermates ( d = 0.31, P < 0.001 and d = 0.39, P = 0.015). This functional impairment was associated with reduced mRNA transcript abundance of thioredoxin-1 ( Trx1), thioredoxin interacting protein ( Txnip), and the ER stress markers Chop and Grp94, whereas, in slow soleus muscles, Seps1 deletion did not compromise contractile function and Trx1 ( d = 1.38, P = 0.012) and Txnip ( d = 1.27, P = 0.025) gene expression was increased. Seps1 is a novel regulator of contractile function and cellular stress responses in fast-twitch muscles.

Funder

National Health and Medical Research Council (NHMRC) Senior Research Fellowship

National Health and Medical Research Council (NHMRC) Project Grant

Deakin University Centre for Molecular and Medical Research

The Sir Edward 'Weary' Dunlop Medical Research Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3