The magnitude of the exercise pressor reflex is influenced by the active skeletal muscle mass in the decerebrate rat

Author:

Estrada Juan A.1,Ducrocq Guillaume P.1,Kaufman Marc P.1

Affiliation:

1. Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania

Abstract

The exercise pressor reflex is composed of two components, namely the muscle mechanoreflex and the muscle metaboreflex. The afferents evoking the two components are either thinly myelinated (group III) or unmyelinated (group IV); in combination they are termed “thin fiber afferents.” The exercise pressor reflex is often studied in unanesthetized, decerebrate rats. However, the relationship between the magnitude of this reflex and the number of thin fiber afferents stimulated by muscle contraction is unknown. This lack of knowledge prompted us to test the hypothesis that the magnitude of the exercise pressor reflex was directly proportional to the amount of muscle mass activated. Muscle mechanoreceptors were stimulated by stretching the calcaneal tendon. Likewise, muscle metaboreceptors were stimulated by injecting lactic acid into the arterial supply of the hindlimb muscles. In addition, both muscle mechanoreceptors and metaboreceptors were stimulated by statically contracting the hindlimb muscles. We found that simultaneous bilateral (both hindlimbs) stimulation of thin fiber afferents with stretch, lactic acid, and static contraction evoked significantly greater pressor responses than did unilateral (one hindlimb) stimulation of these afferents. In addition, the magnitude of the pressor responses to bilateral simultaneous stimulation of thin fiber afferents evoked by stretch, lactic acid, and contraction was not significantly different from the magnitude of the sum of the pressor responses evoked by unilateral stimulation of these afferents by stretch, lactic acid, and contraction. We conclude that the magnitude of the exercise pressor reflex and its two components is dependent on the number of afferents stimulated.

Funder

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3