Role of excitatory amino acids in regulation of rat pial microvasculature

Author:

Huang Q. F.1,Gebrewold A.1,Zhang A.1,Altura B. T.1,Altura B. M.1

Affiliation:

1. Department of Physiology, State University of New York Health Science Center at Brooklyn, New York 11203.

Abstract

Recently, attention has been drawn to the possibility that excitatory amino acids (EAAs) may play an important role in the pathogenesis of hypoxic-ischemic neuronal injury. Exaggerated release of EAAs and excessive stimulation of N-methyl-D-aspartate (NMDA) receptors and other EAA receptors have been suggested to contribute to neuronal death in ischemia and anoxia. A number of in vitro and in vivo experimental studies have shown that EAA-receptor antagonists exert a protective effect on the brain after cerebral ischemia. Because neurons are in close apposition to small intracerebral vessels, synaptically released EAAs might also regulate small blood vessel function. With the use of quantitative television microscopic observations, in vivo studies were undertaken on pial arterioles of rats. Perivascular administration of cumulative doses (10(-7)-10(-2) M) of L-glycine, L-glutamate, L-aspartate, and NMDA on the pial microvessels resulted in concentration-dependent constriction of pial arterioles (5-30% decreases in diameter) and cerebrovasospasm; the relative order of potency was aspartate > NMDA > glycine > glutamate. High concentrations of EAAs often resulted in rupture of postcapillary venules. No amine or opiate antagonist or cyclooxygenase inhibitor prevented or attenuated the effects of these putative EAAs. EAA-induced constriction and spasm of pial arterioles as well as rupture of venules could, however, be blocked by the noncompetitive NMDA-receptor antagonist MK-801 and by Mg2+. MK-801 also produced a concentration-dependent relaxation on normal pial arterioles. These results are compatible with the idea that a specific NMDA-receptor complex (RC) exists in rat cortical microvessels, which subserves vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3