Renin release in rats during blockade of nitric oxide synthesis

Author:

Johnson R. A.1,Freeman R. H.1

Affiliation:

1. Department of Physiology, University of Missouri School of Medicine,Columbia 65212.

Abstract

The influence of renal perfusion pressure on renin release was examined in rats administered the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Compared with the control plasma renin of 6.0 +/- 0.7 ng angiotensin I (ANG I).ml-1.h-1, plasma renin activity was suppressed (1.8 +/- 0.2 ng ANG I.ml-1.h-1, P < 0.05) in L-NAME-treated animals in which the renal perfusion pressure was permitted to increase and reached 141 +/- 8 mmHg. Plasma renin activity also was suppressed (2.5 +/- 0.4 ng ANG I.ml-1.h-1, P < 0.05) in a second L-NAME-treated group in which the renal perfusion pressure was controlled to a level of 105 +/- 5 mmHg via tightening of a suprarenal aortic snare. Plasma renin activity was increased (12.0 +/- 1.4 ng ANG I.ml-1.h-1, P < 0.05) in a third L-NAME-treated group in which renal perfusion pressure was reduced to 59 +/- 1 mmHg. Overall, these findings suggest that the intrarenal pressure-sensing mechanism for renin release does not stringently require nitric oxide synthesis. In a second experimental series, bilaterally renal-denervated rats were administered L-NAME, and again plasma renin activity was suppressed significantly whether renal perfusion pressure was permitted to increase or was controlled. Thus L-NAME also suppressed plasma renin activity independently of reflex reductions in renal neuroadrenergic activity even when renal perfusion pressure was controlled. Infusions of sodium nitroprusside completely inhibited L-NAME-induced suppression of plasma renin activity in these renal-denervated rats. Nitric oxide may function as a paracrine stimulatory mechanism for the local regulation of renin release.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3