Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: dose-response studies

Author:

Pagliassotti M. J.1,Shahrokhi K. A.1,Moscarello M.1

Affiliation:

1. Department of Molecular Physiology, Vanderbilt University School ofMedicine, Nashville, Tennessee 37232.

Abstract

The ability of dietary sucrose to induce insulin resistance independent of changes in body weight is controversial. In the present study male rats were fed a high-starch (ST) diet (starch 68% of total kcal) ad libitum for 2 wk and then were fed equicalorically either the ST diet or a high-sucrose (SU) diet (sucrose 68% of total kcal) for 8 wk. Euglycemic, hyperinsulinemic (0, 1.2, 4.1, 8, 15 mU.kg-1.min-1, n = 6-8/group per dose) clamps were then used to establish dose-response relationships for glucose kinetics and metabolism. Body weight (513 +/- 3 g) and composition were similar between groups after the 8-wk dietary period. Glucose infusion rates (GIR; mg.kg-1.min-1) were significantly less in SU (0.9 +/- 5.8 +/- 0.6, 14.8 +/- 1.3, and 18 +/- 1.1) than in ST rats (4.1 +/- 0.9, 12.3 +/- 1.2, 22.6 +/- 1.5, and 25.9 +/- 1.8) at 1.2, 4.1, 8, and 15 mU.kg-1.min-1, respectively. Impaired suppression of endogenous glucose production accounted for 46, 43, 23, and 0% of the reduction in GIR in SU rats at 1.2, 4.1, 8, and 15 mU.kg-1.min-1, respectively. Despite basal hyperinsulinemia (38 +/- 2 microU/ml in SU vs. 26 +/- 2 microU/ml in ST rats), liver phosphoenolpyruvate carboxykinase (PEPCK) activity was 50% higher in SU than in ST rats and remained elevated in SU rats (by 30-40%) at the two lower insulin doses. No skeletal muscle glycogen accumulation occurred in SU rats at any of the insulin doses, and glycogen synthase I activity was significantly lower in SU rats at the two highest insulin doses.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3