Effects of temperature and freezing on hepatocytes isolated from a freeze-tolerant frog

Author:

Storey K. B.1,Mommsen T. P.1

Affiliation:

1. Institute of Biochemistry, Carleton University, Ottawa, Ontario,Canada.

Abstract

Metabolically active hepatocytes prepared from freeze-tolerant wood frogs, Rana sylvatica, were used to examine the direct effects of temperature and freezing on cryoprotectant synthesis and to assess the effectiveness of the natural cryoprotectant glucose in the freezing preservation of the isolated cells. Freshly isolated hepatocytes showed slow leakage of lactate dehydrogenase, readily synthesized urea, and oxidized a variety of 14C-labeled substrates. Effects of temperature on glucose production by isolated hepatocytes showed a normal Arrhenius relationship. However, compared with 0 degrees C control cells, either incubation at higher temperatures or freezing at -3 degrees C reduced the activity of glycogen phosphorylase alpha. These data suggest that the freezing-induced cryoprotectant production that occurs in vivo is not due to direct action of either low temperature or freezing on liver cell metabolism. The natural cryoprotectant glucose was also an excellent cryoprotectant of hepatocytes in vitro. In the absence of glucose, freezing caused a substantial leakage of lactate dehydrogenase from isolated hepatocytes, the rate of leakage increasing as freezing temperature decreased. Addition of 200-600 mM glucose to the incubation medium (similar to natural levels) fully protected cells against damage during freezing at -4 or -8 degrees C, normal freezing temperatures experienced by these frogs. Glucose also greatly improved freezing survival of isolated frog hepatocytes at ultralow temperatures (-80 or -196 degrees C).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3