Free-running rhythms of melatonin, cortisol, electrolytes, and sleep in humans in Antarctica

Author:

Kennaway D. J.1,Van Dorp C. F.1

Affiliation:

1. Department of Obstetrics and Gynaecology, University of Adelaide, South Australia.

Abstract

The geographic isolation and the prolonged absence of sunlight during winter make Antarctica an interesting environment for studying circadian rhythms. This study explored the effects of wintering on sleep, hormonal, and electrolyte rhythms in four human subjects living in a small Antarctic base. Up to the last sunset sleep, 6-sulfatoxymelatonin, cortisol, sodium, and potassium rhythms were synchronized within clock time. During the 126 days of winter, when there was no sunlight, the circadian rhythms of all measures free ran in each individual. For example, the free-running periods for the cortisol excretory rhythm were 24 h 29 min, 24 h 45 min, 25 h 7 min, and 25 h 14 min for subjects C, J, K, and G, respectively. The period lengths of C, J, and K were significantly different, whereas there was no significant difference between K and G. The phase relationships between each rhythm remained constant in three out of the four subjects. Total daily output and rhythm amplitude for 6-sulfatoxymelatonin, potassium, and sodium remained constant during the entrained and free-running stages of the study. Significant changes in total daily cortisol excretion were observed during the year with one subject producing less and two subjects more while the rhythms were free running. When the sun reappeared during spring, all rhythms again synchronized and entrained to the daylight. These results show that 1) circadian rhythms can free run, even when the subjects have knowledge of time; and 2) within a small communal group, individuals can maintain unique free-running periods.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3