Ethanol oxidation is not required to attenuate endotoxin-enhanced glucose metabolism

Author:

Molina P. E.1,Lang C. H.1,Bagby G. J.1,Spitzer J. J.1

Affiliation:

1. Department of Physiology, Louisiana State University Medical Center, New Orleans 70112.

Abstract

Previous studies from our laboratory demonstrated that acute ethanol (EtOH) intoxication, through an unknown mechanism, blunts the endotoxin-enhanced carbohydrate metabolism. The purpose of the present study was to determine whether oxidation of the ethanol moiety is required for the inhibition of the endotoxin-induced changes in carbohydrate metabolism. In vivo glucose kinetics were assessed by the intravenous administration of D-[3-3H]glucose in catheterized conscious unrestrained rats. Escherichia coli endotoxin (200 micrograms/100 g body wt) increased glucose rate of appearance (Ra) and metabolic clearance rate (MCR) by 75 and 50%, respectively. A primed-constant infusion of EtOH (275 mg/100 g + 25 mg.100 g-1.h-1) initiated 2 h before endotoxin challenge attenuated the endotoxin-enhanced glucose kinetics. EtOH intoxication did not prevent endotoxin-induced hyperglycemia but delayed the hyperlactacidemic response. The importance of EtOH metabolism in suppressing the glucose metabolic response to endotoxin was studied by administering 4-methyl-pyrazole (4-MP; 8 mg/100 g), an inhibitor of alcohol dehydrogenase activity. After administration of 4-MP and a bolus injection of EtOH (275 mg/100 g), the plasma EtOH concentration remained constant and matched the level of EtOH in rats receiving a primed-constant infusion of EtOH. Inhibition of EtOH metabolism with 4-MP did not abrogate the ability of EtOH to suppress endotoxin-induced increases in glucose Ra or MCR. Furthermore, the injection of the nonmetabolized alcohol tert-butanol abolished the endotoxin-induced increase in glucose Ra and MCR without preventing the endotoxin-induced hyperglycemia and hyperlactacidemia.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3