Plasma glucagon, glucose, and free fatty acid concentrations and secretion during prolonged hypothermia in rats

Author:

Hoo-Paris R.1,Jourdan M. L.1,Moreau-Hansany C.1,Wang L. C.1

Affiliation:

1. Department of Zoology, University of Alberta, Edmonton, Canada.

Abstract

Impairment of metabolic substrate mobilization and utilization may be a factor limiting survival in hypothermia. Using a newly developed technique for maintaining stable low body temperature (Tb), substrate profiles and their regulation by glucagon were examined in hypothermic rats (Tb 19 +/- 0.3 degrees C) over 20 h. During cooling, plasma glucagon, glucose, and free fatty acid (FFA) concentrations increased significantly (536 +/- 55 pg/ml, 304 +/- 26 mg/100 ml, and 844 +/- 81 mueq/l, respectively). Plasma glucagon and glucose concentrations continued to increase up to 8 h (peaks 810 +/- 103 pg/ml and 451 +/- 33 mg/100 ml, respectively) and remained high throughout the rest of the hypothermic period. FFA concentrations decreased steadily during the hypothermic period. Exogenous glucagon (20 micrograms/kg) induced significant increases in plasma glucose (+129 +/- 31 mg/100 ml) and FFA concentrations (+351 mueq/l) at 2 h but had no effect at 15 h of hypothermia. In vitro evaluation of pancreatic alpha-cell function indicated that glucagon secretion is independent of temperature between 37 and 19 degrees C. Our data indicate that hypothermia is characterized by a disturbed substrate metabolism, which is likely due to an imbalance in pancreatic alpha- and beta-cell function and a time-dependent decrease in tissue sensitivity to glucagon. These deleterious changes may limit survival in hypothermia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3