Central sympathoinhibition and peripheral neuronal uptake blockade after desipramine in rabbits

Author:

Eisenhofer G.1,Saigusa T.1,Esler M. D.1,Cox H. S.1,Angus J. A.1,Dorward P. K.1

Affiliation:

1. Baker Medical Research Institute, Prahran, Victoria, Australia.

Abstract

Peripheral- and central nervous system (CNS)-mediated effects of desipramine (Des) on sympathetic nerves and the contribution of alpha 2-adrenoceptors to these effects were studied in conscious rabbits. Blood pressure, renal sympathetic nerve activity (SNA), and norepinephrine (NE) reuptake and spillover into plasma were measured before and after intracisternal (ic) or intravenous (i.v.) administration of Des. In other animals, NE spillover responses to i.v. Des were examined before and after alpha 2-adrenoceptor blockade with i.v. idazoxan. Treatment with i.v. Des blocked neuronal reuptake and decreased renal SNA but did not alter blood pressure or NE spillover. Decreased NE release by sympathetic nerves after i.v. Des was reflected by a decrease in the combined rate of NE reuptake and spillover. Treatment with ic Des (at 1.7% of the i.v. dose) decreased blood pressure and renal SNA and produced equivalent falls in NE reuptake and spillover, indicating little peripheral effect of centrally administered Des on the efficiency of neuronal reuptake. Thus Des had two distinct actions: the drug blocked neuronal reuptake by direct actions on nerve endings and reduced SNA by actions within the CNS. After ic Des, decreased SNA produced parallel falls in NE reuptake, spillover, and blood pressure. After i.v. Des, blockade of neurotransmitter reuptake increased NE concentrations at sympathoeffector junctions offsetting the fall in SNA, so that there was little change in NE spillover or blood pressure. However, after alpha 2-adrenoceptor blockade with i.v. idazoxan, NE spillover increased in response to i.v. Des. Thus the Des-induced decrease in NE release was partly mediated by an action of raised intrasynaptic NE concentrations on inhibitory alpha 2-adrenoceptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3