FNLP injures endotoxin-primed rat lung by neutrophil-dependent and -independent mechanisms

Author:

Anderson B. O.1,Bensard D. D.1,Brown J. M.1,Repine J. E.1,Shanley P. F.1,Leff J. A.1,Terada L. S.1,Banerjee A.1,Harken A. H.1

Affiliation:

1. Department of Surgery, University of Colorado, Denver 80262.

Abstract

Bacterial lipopolysaccharide (LPS) and an N-formyl peptide, N-formyl-neoleucyl-leucyl-phenylalanine (FNLP), synergistically promote lung injury in rats as measured by 125I-labeled albumin flux. Concomitantly, neutrophils are sequestered in the lung. We hypothesized that LPS-FNLP-induced lung injury is mediated both by neutrophil-dependent and -independent mechanisms. Rats were depleted of circulating and marginating neutrophils with vinblastine. LPS-FNLP-induced lung protein leak was partially decreased in these neutrophil-depleted animals, although a component of lung injury remained. We hypothesized that LPS-FNLP-induced lung injury was also mediated by xanthine oxidase (XO). Rats were fed a tungsten-enriched diet that inactivates molybdenum-dependent oxidase systems. LPS-FNLP-induced lung leak was partially decreased in these animals as well. When tungsten-fed rats were also neutrophil depleted with vinblastine, no increase in 125I-albumin flux was observed in response to LPS-FNLP. In parallel experiments, lungs from vinblastine-pretreated rats were isolated and perfused. FNLP infusion into the LPS-primed, crystalloid-perfused lungs caused increased 125I-albumin flux, which was prevented by oxidase inhibition. We conclude that LPS-FNLP-induced lung injury is both neutrophil mediated and neutrophil independent. The nonneutrophil component of the LPS-FNLP-induced lung injury appears to be pulmonary XO derived and dependent.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3