Altered responsiveness of the kidney to activation of the renal nerves in fat-fed rabbits

Author:

Michaels Sylvia,Eppel Gabriela A.,Burke Sandra L.,Head Geoffrey A.,Armitage James,Carroll Joan F.,Malpas Simon C.,Evans Roger G.

Abstract

We tested whether mild adiposity alters responsiveness of the kidney to activation of the renal sympathetic nerves. After rabbits were fed a high-fat or control diet for 9 wk, responses to reflex activation of renal sympathetic nerve activity (RSNA) with hypoxia and electrical stimulation of the renal nerves (RNS) were examined under pentobarbital anesthesia. Fat pad mass and body weight were, respectively, 74% and 6% greater in fat-fed rabbits than controls. RNS produced frequency-dependent reductions in renal blood flow, cortical and medullary perfusion, glomerular filtration rate, urine flow, and sodium excretion and increased renal plasma renin activity (PRA) overflow. Responses of sodium excretion and medullary perfusion were significantly enhanced by fat feeding. For example, 1 Hz RNS reduced sodium excretion by 79 ± 4% in fat-fed rabbits and 46 ± 13% in controls. RNS (2 Hz) reduced medullary perfusion by 38 ± 11% in fat-fed rabbits and 9 ± 4% in controls. Hypoxia doubled RSNA, increased renal PRA overflow and medullary perfusion, and reduced urine flow and sodium excretion, without significantly altering mean arterial pressure (MAP) or cortical perfusion. These effects were indistinguishable in fat-fed and control rabbits. Neither MAP nor PRA were significantly greater in conscious fat-fed than control rabbits. These observations suggest that mild excess adiposity can augment the antinatriuretic response to renal nerve activation by RNS, possibly through altered neural control of medullary perfusion. Thus, sodium retention in obesity might be driven not only by increased RSNA, but also by increased responsiveness of the kidney to RSNA.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3