Transcriptional reprogramming during reloading of atrophied rat soleus muscle

Author:

Flück Martin,Schmutz Silvia,Wittwer Matthias,Hoppeler Hans,Desplanches Dominique

Abstract

The hypothesis was tested that differential, coregulated transcriptional adaptations of various cellular pathways would occur early with increased mechanical loading of atrophied skeletal muscle and relate to concurrent damage of muscle fibers. Atrophy and slow-to-fast fiber transformation of rat soleus muscle was provoked by 14 days of hindlimb suspension (HS). Subsequent reloading of hindlimbs caused a fourfold increase in the percentage of muscle fibers, demonstrating endomysial tenascin-C staining. Five days after reloading, when 10% of the fibers were damaged, the normal muscle weight and slow-type fiber percentage were reestablished. Microarray analysis revealed major, biphasic patterns of gene expressional alterations with reloading that distinguish between treatments and gene ontologies. Transcript levels of factors involved in protein synthesis and certain proteasomal mRNAs were increased after 1 day of reloading and correlated to the percentage of fibers surrounded by tenascin-C. By contrast, levels of gene messages for fatty acid transporters, respiratory chain constituents, and voltage-gated cation channels were transiently reduced after 1 day of muscle loading and associated with the number of damaged fibers and the regain in muscle weight. This coregulation points toward important retooling of oxidative metabolism and the T- and SR-tubular systems with rebuilding of slow fibers. The observations demonstrate that early nuclear reprogramming with reloading of atrophic soleus muscle is coordinated and links to the processes involved in mechanical damage and regeneration of muscle fibers.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3