Paternal deficiency of complement component C1q leads to a preeclampsia-like pregnancy in wild-type female mice and vascular adaptations postpartum

Author:

Sutton Elizabeth F.12,Gemmel Mary12,Brands Judith12,Gallaher Marcia J.1,Powers Robert W.12

Affiliation:

1. Magee-Womens Research Institute, Pittsburgh, Pennsylvania

2. Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

Preeclampsia is a spontaneously occurring, pregnancy-specific syndrome that is clinically diagnosed by new onset hypertension and proteinuria. Epidemiological evidence describes an association between a history of preeclampsia and increased risk for cardiovascular disease in later life; however, the mechanism(s) driving this relationship are unclear. Our study aims to leverage a novel preeclampsia-like mouse model, the C1q−/− model, to help elucidate the acute and persistent vascular changes during and following a preeclampsia-like pregnancy. Female C57BL/6J mice were mated to C1q−/− male mice to model a preeclampsia-like pregnancy (“PE-like”), and the maternal cardiovascular phenotype (blood pressure, renal function, systemic glycocalyx, and ex vivo vascular function) was assessed in late pregnancy and postpartum at 6 and 10 mo of age. Uncomplicated, normotensive pregnancies (female C57BL/6J bred to male C57BL/6J mice) served as age-matched controls. In pregnancy, PE-like dams exhibited increased systolic and diastolic pressure during mid- and late gestation, renal dysfunction, fetal growth restriction, and reduced placental efficiency. Ex vivo wire myography studies of mesenteric arteries revealed severe pregnancy-specific endothelial-dependent and -independent vascular dysfunction. At 3 and 7 mo postpartum (6 and 10 mo old, respectively), hypertension resolved in PE-like dams, whereas mild vascular dysfunction persisted at 3 mo postpartum. In conclusion, the female C57BL/6J-by-male C57BL/6J C1q−/− model recapitulates many aspects of the human preeclampsia syndrome in a low-risk, wild-type female mouse. The pregnancy-specific phenotype results in systemic maternal endothelial-dependent and -independent vascular dysfunction that persists postpartum.

Funder

American Heart Association

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3