Normotensive sodium loading in conscious dogs: regulation of renin secretion during β-receptor blockade

Author:

Bie Peter,Mølstrøm Simon,Wamberg Søren

Abstract

Renin secretion is regulated in part by renal nerves operating through β1-receptors of the renal juxtaglomerular cells. Slow sodium loading may decrease plasma renin concentration (PRC) and cause natriuresis at constant mean arterial blood pressure (MAP) and glomerular filtration rate (GFR). We hypothesized that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore are eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the β1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of NaCl (20 μmol·kg−1·min−1for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol·kg−1·day−1, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg·kg−1·h−1). Vasopressin V2receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servocontrolled fluid infusion. Metoprolol per se did not affect MAP, heart rate, or sodium excretion significantly, but reduced PRC and ANG II by 30–40%, increased plasma atrial natriuretic peptide (ANP), and tripled potassium excretion. LowNa per se increased PRC (+53%), ANG II (+93%), and aldosterone (+660%), and shifted the vasopressin function curve to the left. NaLoad elevated plasma [Na+] by 4.5% and vasopressin by threefold, but MAP and plasma ANP remained unchanged. NaLoad decreased PRC by ∼30%, ANG II by ∼40%, and aldosterone by ∼60%, regardless of diet and metoprolol. The natriuretic response to NaLoad was augmented during metoprolol regardless of diet. In conclusion, PRC depended on dietary sodium and β1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by β1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or β1-mediated effects of norepinephrine. Low-sodium diet augments vasopressin secretion, whereas ANP secretion is reduced.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3