Acute effects of hyperglycemia on the peripheral nervous system in zebrafish (Danio rerio) following nitroreductase-mediated β-cell ablation

Author:

Rocker Amanda1,Howell Julia1,Voithofer Gabrielle1,Clark Jessica Kennett1ORCID

Affiliation:

1. Department of Biological Sciences, Salisbury University, Salisbury, Maryland

Abstract

Diabetic peripheral neuropathy (DPN) is estimated to affect 50% of diabetic patients. Although DPN is highly prevalent, molecular mechanisms remain unknown and treatment is limited to pain relief and glycemic control. We provide a novel model of acute DPN in zebrafish ( Danio rerio) larvae. Beginning 5 days postfertilization (dpf), zebrafish expressing nitroreductase in their pancreatic β-cells were treated with metronidazole (MTZ) for 48 h and checked for β-cell ablation 7 dpf. In experimental design, this was meant to serve as proof of concept that β-cell ablation and hyperglycemia are possible at this time point, but we were surprised to find changes in both sensory and motor nerve components. Compared with controls, neurod+ sensory neurons were often observed outside the dorsal root ganglia in MTZ-treated fish. Fewer motor nerves were properly ensheathed by nkx2.2a+ perineurial cells, and tight junctions were disrupted along the motor nerve in MTZ-treated fish compared with controls. Not surprisingly, the motor axons of the MTZ-treated group were defasciculated compared with the control group, myelination was attenuated, and there was a subtle difference in Schwann cell number between the MTZ-treated and control group. All structural changes occurred in the absence of behavioral changes in the larvae at this time point, suggesting that peripheral nerves are influenced by acute hyperglycemia before becoming symptomatic. Moving forward, this novel animal model of DPN will allow us to access the molecular mechanisms associated with the acute changes in the hyperglycemic peripheral nervous system, which may help direct therapeutic approaches.

Funder

Salisbury University Foundation

Henson School of Science and Technology

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3