CCK-induced inhibition of presympathetic vasomotor neurons: dependence on subdiaphragmatic vagal afferents and central NMDA receptors in the rat

Author:

Verberne Anthony J. M.1,Sartor Daniela M.1

Affiliation:

1. University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin Health, Heidelberg, Victoria 3084, Australia

Abstract

Systemic administration of cholecystokinin (CCK) inhibits a subpopulation of rostral ventrolateral medulla (RVLM) presympathetic vasomotor neurons. This study was designed to determine whether this effect involved subdiaphragmatic vagal afferents and/or central N-methyl-d-aspartic acid (NMDA) receptors. Recordings were made from CCK-sensitive RVLM presympathetic vasomotor neurons in halothane-anesthetized, paralyzed male Sprague-Dawley rats. The responses of the neurons to CCK (2 and 4 μg/kg iv), phenylephrine (PE; 5 μg/kg iv), and phenylbiguanide (PBG; 5 μg/kg iv) were tested before and after application of the local anesthetic lidocaine (2% wt/vol gel; 1 ml) to the subdiaphragmatic vagi at the level of the esophagus. In seven separate experiments, lidocaine markedly reduced the inhibitory effects of CCK on RVLM presympathetic neuronal discharge rate. In other experiments, the effect of systemic administration of dizocilpine (1 mg/kg iv), a noncompetitive antagonist at NMDA receptor ion channels, on the RVLM presympathetic neuronal responses to CCK, PBG, and PE was tested. In all cases ( n = 6 neurons in 6 individual rats), dizocilpine inhibited the effects of CCK, PBG, and PE on RVLM presympathetic neuronal discharge. These results suggest that the effects of systemic CCK on the discharge of RVLM presympathetic neurons is mediated via an action on receptors located on subdiaphragmatic vagal afferents. Furthermore, the data suggest that CCK activates a central pathway involving NMDA receptors to produce inhibition of RVLM presympathetic neuronal discharge.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3