Nitric oxide increases fluid extravasation from the splenic circulation of the rat

Author:

Andrew Peter S.1,Deng Yiming1,Sultanian Richard1,Kaufman Susan1

Affiliation:

1. Departments of Physiology and Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada

Abstract

We hypothesized that nitric oxide (NO) contributes to intrasplenic fluid extravasation by inducing greater relaxation in splenic resistance arteries than veins such that intrasplenic microvascular pressure (PC) rises. Fluid efflux was estimated by measuring the difference between splenic blood inflow and outflow. Intrasplenic infusion of the NO donor S-nitroso- N-acetylpenicillamine (SNAP) (0.3 μg · 10 μl−1 · min−1) caused a significant increase in intrasplenic fluid efflux (baseline: 0.8 ± 0.4 ml/min, n = 10 vs. peak rise during SNAP infusion: 1.3 ± 0.4 ml/min, n = 10; P < 0.05). Intrasplenic PC was measured in the isolated, blood-perfused rat spleen. Intrasplenic infusion of SNAP (0.1 μg · 10 μl−1 · min−1) caused a significant increase in PC (saline: 10.9 ± 0.2 mmHg, n = 3 vs. SNAP: 12.2 ± 0.2 mmHg, n = 3; P < 0.05). Vasoreactivity of preconstricted splenic resistance vessels to sodium nitroprusside (SNP) (1 × 10−12-1 × 10−4 M) and SNAP (1 × 10−10-3 × 10−4 M) was investigated with the use of a wire myograph system. Significantly greater relaxation of arterioles than of venules occurred with both SNP (%maximal vasorelaxation: artery 96 ± 2.3, n = 9 vs. vein 26 ± 1.9, n = 10) and SNAP (%maximal vasorelaxation: artery 50 ± 3.5, n = 11 vs. vein 32 ± 1.7, n = 8). These results are consistent with our proposal that differential vasoreactivity of splenic resistance arteries and veins to NO elevates intrasplenic PC and increases fluid extravasation into the systemic lymphatic system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3