Transplantation of metanephroi across the major histocompatibility complex in rats

Author:

Rogers Sharon A.1,Liapis Helen1,Hammerman Marc R.1

Affiliation:

1. George M. O'Brien Kidney and Urological Disease Center, Renal Division, Departments of Medicine, Cell Biology and Physiology, and Pathology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

To determine whether transplanted metanephroi grow, differentiate, and function in hosts that differ in major histocompatibility complex loci (RT1 loci in rats) from donors in a defined way, we implanted metanephroi from embryonic day( E) 15 PVG (RT1c) rat embryos into the omentum of nonimmunosupressed uninephrectomized PVG-RT1avl (host) rats. By 4 wk posttransplantation, metanephroi had grown and differentiated such that glomeruli, proximal and distal tubules, and collecting ducts had normal structure and ultrastructure. At 12 wk posttransplantation, weights of metanephroi were 54 ± 8 mg. Inulin clearances were 0.9 ± 0.3 μl · min−1 · 100 g rat wt−1. In vitro, splenocytes from PVG rats stimulated the proliferation of cells originating from both PVG-RT1avlrats in which a transplant had been performed and PVG-RT1avl rats with no transplant. Full-thickness PVG-RT1avl skin engrafted normally on PVG-RT1avl rats in which PVG metanephroi had been previously implanted and metanephroi retained a normal appearance. In contrast, skin from PVG rats sloughed, and the tubular architecture of metanephroi was obliterated by a mononuclear cell infiltrate consistent with acute rejection. Here we show for the first time that functional chimeric kidneys develop from metanephroi transplanted across the MHC into nonimmunosupressed hosts and provide evidence that a state of peripheral immune tolerance secondary to T cell “ignorance” permits their survival.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3