Differential effects from parapyramidal region and rostral ventrolateral medulla mediated by substance P

Author:

Swiatkowski Kenneth1,Dellamano Lynn M.1,Vissing John2,Rybicki Kenneth J.3,Kozlowski Gerald P.4,Iwamoto Gary A.1

Affiliation:

1. Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801;

2. The Copenhagen Muscle Research Center and Department of Neurology, National University Hospital, Rigshospitalet, DK-2100, Copenhagen, Denmark;

3. Department of Internal Medicine, Washington University, St. Louis, Missouri 63110; and

4. Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Abstract

Rostral ventrolateral medulla (rVLM) and parapyramidal region (PPr) serve as important medullary control sites for sympathoexcitation. rVLM and PPr have direct projections to the intermediolateral cell column (IML) that are thought to be important in maintaining mean arterial blood pressure (MAP). Substance P (SP) is found in PPr neurons and in and near the subretrofacial area of the rVLM. At least some of these cells project to the IML. We investigated the involvement of SP at the IML in mediating rVLM- and PPr-evoked pressor responses in the chloralose-anesthetized cat. Pressor responses to electrical and chemical PPr and rVLM stimulation were altered after intrathecal injection, at the level of the T1-T3 spinal cord, of either SP antagonist [d-Pro2,d-Phe7,d-Trp9]-SP, SP antagonist CP 96,345, or SP antiserum. Although MAP and heart rate responses to PPr stimulation were attenuated by intrathecal SP antagonists or antiserum, MAP responses to rVLM stimulation were augmented. Previous studies have revealed differences in transmitters associated with these two areas, even though the general response of both areas is sympathoexcitatory. The present study implies that the identical substance may increase or decrease the MAP response depending on the pathway activated.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3