Heat stress induces ultrastructural changes in cutaneous capillary wall of heat-acclimated rock pigeon

Author:

Arieli Yehuda12,Feinstein Neomi1,Raber Pnina1,Horowitz Michal2,Marder Jacob1

Affiliation:

1. Department of Animal and Cell Biology, Institute of Life Sciences, 95701 Givat-Ram; and

2. Department of Physiology, Hadassah School of Dental Medicine and Medicine, The Hebrew University, 95903 Jerusalem, Israel

Abstract

In heat-acclimated rock pigeons, cutaneous water evaporation is the major cooling mechanism when exposed at rest to an extremely hot environment of 50–60°C. This evaporative pathway is also activated in room temperature by a β-adrenergic antagonist (propranolol) or an α-adrenergic agonist (clonidine) and inhibited by a β-adrenergic agonist (isoproterenol). In contrast, neither heat exposure nor drug administration activates cutaneous evaporation in cold-acclimated pigeons. To elucidate the mechanisms underlying this phenomenon, we studied the role of the ultrastructure and permeability of the cutaneous vasculature. During both heat stress and the administration of propranolol and clonidine, we observed increased capillary fenestration and endothelial gaps. Similarly, propranolol increased the extravasation of Evans blue-labeled albumin in the skin tissue. We concluded that heat acclimation reinforces a mechanism by which the activation of adrenergic signal transduction pathways alters microvessel permeability during heat stress. Consequently the flux of plasma proteins and water into the interstitial space is accelerated, providing an interstitial source of water for sustained cutaneous evaporative cooling.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3